Ug – a Flexible Software Toolbox for Solving Partial Differential Equations
نویسنده
چکیده
Over the past two decades, some very efficient techniques for the numerical solution of partial differential equations have been developed. We are especially interested in adaptive local grid refinement on unstructured meshes, multigrid solvers and parallelization techniques. Up to now, these innovative techniques have been implemented mostly in university research codes and only very few commercial codes use them. There are two reasons for this. Firstly, the multigrid solution and adaptive refinement for many engineering applications are still a topic of active research and cannot be considered to be mature enough for routine application. Secondly, the implementation of all these techniques in a code with sufficient generality requires a lot of time and know-how in different fields. UG (abbreviation for Unstructured Grids) has been designed to overcome these problems. It provides very general tools for the generation and manipulation of unstructured meshes in two and three space dimensions as well as a flexible data layout. Therefore, it can serve on the one hand as a tool for exploring new algorithms and, on the other hand, a whole range of algorithms already implemented can be applied to complex problems. In this paper, we show the software design structure of UG and explore some of the subsystems in more detail. Finally, we try to illustrate the capabilities of the approach with several non–trivial examples.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملSolving a Class of Partial Differential Equations by Differential Transforms Method
In this work, we find the differential transforms of the functions $tan$ and $sec$, and then we applied this transform on a class of partial differential equations involving $tan$ and $sec$.
متن کاملHomotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations
Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کامل